stats¶
-
timeseries.stats.
mean
(values)[source]¶ Return the sample mean of a numeric iterable.
- Parameters
values – finite-length iterable of float-convertable numbers
- Example
>>> import timeseries as ts
>>> values = (1, 2, 3) >>> ts.stats.mean(values) 2.0
-
timeseries.stats.
variance
(values)[source]¶ Return the unbiased sample variance of a numeric iterable.
- Parameters
values – finite-length iterable of float-convertable numbers
- Example
>>> import timeseries as ts
>>> values = (1, 2, 3) >>> ts.stats.variance(values) 1.0
-
timeseries.stats.
crosscovariance
(values1, values2)[source]¶ Return the (unnormalized) cross-covariance of two numeric iterables.
- Parameters
values1 – finite-length iterable of float-convertable numbers
values2 – finite-length iterable of float-convertable numbers
- Example
>>> import timeseries as ts
>>> values1 = (1, 2, 3) >>> values2 = (-2, -4, -6) >>> ts.stats.crosscovariance(values1, values2) -2.0
-
timeseries.stats.
crosscorrelation
(values1, values2)[source]¶ Return the (normalized) Pearson cross-correlation of two numeric iterables.
- Parameters
values1 – finite-length iterable of float-convertable numbers
values2 – finite-length iterable of float-convertable numbers
- Example
>>> import timeseries as ts
>>> values1 = (1, 2, 3) >>> values2 = (-2, -4, -6) >>> ts.stats.crosscorrelation(values1, values2) -1.0