filter¶
-
class
timeseries.filter.window.
_RollingWindow
(tseries, window_size, weights='even', **kwargs)[source]¶ Bases:
object
Rolling window class for applying filters to time series.
-
_apply_filter
(window_func, **kwargs)[source]¶ Apply filter and return time series.
- Parameters
window_func – windowed function to apply. Current options: ‘average’ - weighted moving average over window size
**kwargs – keyword arguments passed to window function
-
custom
(func)[source]¶ Apply custom function to weighted values in rolling window and return time series.
- Parameters
func – custom function to apply in rolling windows
-
-
class
timeseries.filter.weights.
Weights
(*args, **kwargs)[source]¶ Bases:
abc.ABC
Abstract class for applying weights in rolling window.
-
class
timeseries.filter.weights.
EvenWeights
(*args, **kwargs)[source]¶ Bases:
timeseries.filter.weights.Weights
Even (uniform) weights for rolling window.
- Example
>>> from timeseries.filter.weights import EvenWeights
>>> EvenWeights().get_weights(4) [0.25, 0.25, 0.25, 0.25]
>>> EvenWeights().get_weights(5) [0.2, 0.2, 0.2, 0.2, 0.2]
-
class
timeseries.filter.weights.
LinearWeights
(min_weight)[source]¶ Bases:
timeseries.filter.weights.Weights
Linearly increasing weights for rolling window.
- Example
>>> from timeseries.filter.weights import LinearWeights
>>> LinearWeights(min_weight=0.1).get_weights(2) [0.1, 0.9]
>>> LinearWeights(min_weight=0.1).get_weights(4) [0.1, 0.2, 0.3, 0.4]
-
class
timeseries.filter.weights.
NoneWeights
(*args, **kwargs)[source]¶ Bases:
timeseries.filter.weights.Weights
None-weights (all ones) for rolling window.
- Example
>>> from timeseries.filter.weights import NoneWeights
>>> NoneWeights().get_weights(5) [1, 1, 1, 1, 1]
-
class
timeseries.filter.func.
WindowFunction
[source]¶ Bases:
abc.ABC
Abstract class for applying function in window.
-
class
timeseries.filter.func.
SeriesFunction
[source]¶ Bases:
abc.ABC
Abstract class for applying function to series.
-
class
timeseries.filter.func.
CustomWindowFunction
(func)[source]¶ Bases:
timeseries.filter.func.WindowFunction
Apply custom function in window.
- Parameters
func – function to apply in window
-
class
timeseries.filter.func.
SumWindow
[source]¶ Bases:
timeseries.filter.func.CustomWindowFunction
Sum over values in window.
-
class
timeseries.filter.func.
CustomExponentialSeriesFunction
(func, alpha)[source]¶ Bases:
timeseries.filter.func.SeriesFunction
Apply custom exponentially smoothed function to series.
- Parameters
func – function to apply to series
alpha – smoothing factor, must be between 0 and 1
-
class
timeseries.filter.func.
ExponentialMovingAverageSeries
(alpha)[source]¶ Bases:
timeseries.filter.func.CustomExponentialSeriesFunction
Exponentially smoothed moving average of series.
- Parameters
alpha – smoothing factor, must be between 0 and 1